Zur Ermittlung und rechnerischen Uberpriifung
thermodynamischer Daten aus experimentell
gefundenen Werten, 5. Mitt.":

Rechnerische Behandlung des Systems Wasser(1)/Aceton(3)

Von
F. Golles®

Aus dem Institut fiir Pharmakognosie der Universitit Graz
Mit 4 Abbildungen
( Bingegangen am 2. September 1964 )

Es wird die Brauchbarkeit des Ansatzes von Musil—Breiten-
huber zur Zerlegung von Totaldrucken in die Partialdrucke an
Hand des bindren Systems Wasser (1)/Aceton (3) gezeigt. Gleich-
zeitig wird durch numerische Integration nach Runge—Kuita fur
die untersuchten Temperaturen (100, 150 und 200°) die Zusam-
mensetzung der Dampfphase genau bestimmt und mit den ex-
perimentell erhaltenen Werten verglichen. Diese weichen vor
allem in Gebieten niederer Acetonkonzentrationen und bei 200°
von den errechneten Werten mehr oder weniger ab.

Zur Bestimmung der Anfangswerte der numerischen Inte-
gration wird ein einfacher Kunstgriff angewendet und erldutert.

Die an den Parametern A und B des Musilschen Ansatzes
anzubringenden Verbesserungen werden mit Hilfe des ,,verkette-
ten Gaupschen Algorithmus® errechnet. Die Anwendung dieses
Algorithmus wird kurz geschildert. Die erhaltenen Werte der
Partialdrucke werden in den Abbildungen dargestellt und mit den
experimentellen Werten verglichen.

In Fortsetzung der Untersuchung der drei dem Dreistoffsystem
Wasser (1) /Phenol(2)/Aceton (3) zugrunde liegenden bindren Systeme
wird das System Wasser (1)/Aceton(3) im Temperaturbereich 100—200°
rechnerisch tiberpriift. Fir dieses System liegen Messungen der Dampf-

* Herrn Prof. Dr. 4. Musil zum 65. Geburtstag ergebenst gewidmet.

L 1. Mitt.: F. Gélles, Mh. Chem. 92, 981 (1961), 2. Mitt.: F.Golles, Mh.
Chem. 93, 191 (1962), 3. Mitt.: F. Gdlles, Mh. Chem. 93, 201 (1962), 4. Mitt.:
F. Qolles, Mh. Chem. 94, 1108 (1963).
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zusammensetzung und der Totaldrucke fiir die genannten Temperaturen
von Griswold und Wong? vor. Die Autoren errechneten aus ihren ex-
perimentell gefundenen Werten die Aktivitdtskoeffizienten und nahmen
auch die Realgaskorrektur vor.

Bei Betrachtung der experimentellen Werte fiel vor allem auf, daB in
sehr verdiinnter Losung — die Autoren geben fiir die verschiedenen Tem-
peraturen sehr verschiedene Konzentrationen an — die Aktivitdtskoeffi-
zienten einen gewissen unregelmafigen Gang zeigen. Fiir 100 und 150° ist ein
deutliches Maximum im Konzentrationsbereich von zz = 0,00 bis ca.
0,03 erkennbar. Diese UnregelméBigkeit veranlafite mich, den Musil-
schen Ansatz3 auf den Konzentrationsbereich 0,00—0,1 auszudehnen.
Die erhaltenen Resultate finden sich in Abb. 1 fiir alle drei Temperaturen
gezeichnet. Man sieht, dafl im hochverdiinnten Bereich nicht ohne
weiters Ansdtze zur Berechnung der Aktivitétskoeffizienten verwendet
werden diirfen, sondern dall in jedem Falle eine Integration nach
Runge—Xutta* stattzufinden hat, will man ganz sicher gehen.

Um zu sicheren Frgebnissen fiir den ganzen Konzentrationsbereich
zu gelangen und diese dann mit den Ansdtzen nach Musil (1. c.) ver-
gleichen zn koénnen, wurde die numerische Integration zur Génze durch-
gefiithrt, wobei sich im rechten Teil des Konzentrationsbereiches bei
den Temperaturen 150 und 200° die bekannten Schwierigkeiten mit
dem Auftreten der Azeotropie ergaben. Diese wurden umgangen, in-
dem die Integration beider Seiten in Richtung steigender Konzentra-
tionen {23 bzw. x1) vorgenommen wurde.

Eine Schwierigkeit ergab sich bei der genauen Bestimmung der
Zusammensetzung der Dampfphase im Bereich der unendlich verdiinnten
Lésung.

Der Nenner der Abelschen Differentialgleichung

’ Y (1 - ) ! dy
y=5 —2) Y =4p (1)
wird fiir # =y zu 0 — 0, also zu einer unbestimmten Form.
Wir konnen jedoch setzen
Pe=Py=py -z fyund py=Pl—y)=py - {1—2)f (2
Schreiben wir noch zur Vereinfachung y statt 1 —y und z statt
1 — z, so erhalten wir

Ps Y P ¥ f3
== (3)
L Py Yy Pu ¥ h

2 J. G;‘iswold und S. Y. Wong, Chem. Energ. Progr. Symp., Ser. Nr. 3, 48;
Minneapolis, 1952.

3 A. Musil und L. Breitenhuber, Allgem. Wiérmetechnik 5, 103/8 (1954),
Z. Elektrochem. 56, 10, 995 (1952).

4 C. Runge, Math. 46, 167 (1895); W. Kutta, Z. Math. Phys. 46, 435 (1901).
Monatshefte fiir Chemie, Bd. 95/6 107
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Da aber im sehr verdiinnten Bereich zg = 0,001 f; mit 1 normiert
werden kann, ergibt sich

(3a)

8| &I

—Pou Y,
Pos Y

49095

78056

47750
) 46578
i
| 45977
2%
495375
95 -
495 -
2 |

[
490 405 q7
Z3

Abb. 1. Verlauf der Aktivitdtskoeffizienten des Systems Wasser (1)/Aceton (3) im Bereich sehr
niedriger Acetonkonzentrationen. Maxima fiix 100° und 150°,

f3 ist der Grenzaktivitidtskoeffizient des Acetons, den man in bekannter
Weise durch Anwendung des Differenzenspiegels erhilt. Aus GL (3a)
laBt sich durch Umformung der Wert der Anfangskonzentration y be-
rechnen.

Da die experimentellen Werte fiir die Totaldruckkurve in unregel-
méafBiger Aufeinanderfolge der Konzentrationen angegeben sind, erwies
es sich als notwendig, die Kurven zu zeichnen und zwischen den ein-
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zelnen Intervallen eine quadratische Parabel nach dem Verfahren von
Newton® zu legen, und zwar stets so, dafi die angegebenen experimen-
tellen Werte als Stiitzstellen verwendet wurden. Hieraus ergab sich
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Abb. 2. Partialdrucke p; des Acetons im Bereich sehr verdiinnter Acetonkonzentrationen.
E = experimentell gefundene Werte.

nun, wie die Abb. 2 zeigt ein regelméBiger Verlauf der ps-Werte in Ab-
héngigkeit von 3.

Da im Bereich der sehr niedrigen Acetonkonzentrationen nur wenige
MeBpunkte bekannt sind, lassen sich auch keine eindeutigen Schliisse
ziehen, ob die experimentell gefundenen Werte, die — besonders fiir die
Temperatur 200° — einen zu hohen Wert fir die Aktivitdtskoeffizienten

5 R. Zurmiikl, Prakt. Mathematik, Springer (Berlin) 1963, S, 1951,

107*
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bei zz = 0,0022 und auch x3 = 0,0182 liefern, MeBfehlern bei der Be-
stimmung der Totaldriicke oder aber bei der Bestimmung von y zuzu-
schreiben sind. :

Der Ansatz von Musil (1. ¢.) liefert gute Werte, schon in der ersten
Néherung fiir die drei untersuchten Temperaturen. Zur FErlangung
einer besseren Ubersicht wurden statt natiirlicher Logarithmen de-
kadische verwendet. In der einschligigen thermodynamischen Literatur
wurden und werden die Konstanten der verschiedenen Anséitze immer
als dekadische Logarithmen der Grenzaktivititskoeffizienten angegeben,
so dall wir uns hier diesem Brauche anschlieflen.

Der Differenzenspiegel wurde in einer etwas genaueren Form der-
gestalt verwendet, dall nicht die ersten vier, sondern die ersten fiinf
dquidistanten Punkte der Totaldruckkurve zur Konstruktion der
Néherungsparabeln verwendet wurden. Aus diesen Naherungsparabeln
wird durch einfaches Bilden der ersten Ableitung P’ und Verwendung
der Formeln

P (0) + P’ (0)

Py—r
A =log —(—)I_W—(Q und B =log —‘IT(—l)—H 4)

der dekadische Logarithmus des jeweiligen Grenzaktivitdtskoeffizienten
gewonnen. Tab. 1 bringt die erhaltenen Werte und die aus ihnen er-
rechneten Ausdriicke 1/ VZ, 1 /VE, ]/E?/—A und VA;/B#, die fiir den Ansatz
von wven Laar® charakteristisch sind.

Tabelle 1. Reindrucke und Ableitungen an den beiden Enden
des Konzentrationsbereiches

T 100° 150° 200°
P (0) 1 4,7 15,86
P’ (0) 28,77 68,79 129,40
P (1) 3,667 11,45 28,00
Po(1) — 0,033 — 2,708 — 11,79
A = limlog f1 0,5682 0,4804 0,3995
xr3 — 1
B = lim log f3 0,9095 0,8056 0,71499
xr3 — 0
Y4 1,326 1,442 1,582
1/{B 1,048 1,114 1,183
VB/A 1,678 1,869 2,115
VA/B 0,830 0,862 0,884

8 J.J. van Laar, Z. physik. Chem. A 137, 421 (1928).
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Die Werte von 4 und B wurden nun gegen den Kehrwert der ab-
soluten Temperatur T aufgetragen. Sie ergeben, nach Gauf? ausge-
glichen, Gerade mit den Gleichungen

108

B = 0,00256 4- 0,3384 - 7

(8)
. 102
A= 02188 40,205 - -

Die lineare Temperaturabhéngigkeit von 4 und B setzt ung in die
Lage, fiir jede beliebige Zwischentemperatur im Intervall von 100 bis
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Abb. 3a-c. Vollstindiges Diagramm der Total- und Partialdrucke des Systems Wasser (1)/Aceton (3).
Niherungen nach Musil. E = experimentell gefundene Werte.

a = 100°,
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? R. Zurmiihl®, S. 98.
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200° Aktivitdtskoeffizienten, Partialdrucke und thermodynamische Funk-

tionen zu berechnen.
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Abb. 3b. 150°

Abb. 3 a, b und ¢ zeigen die Totaldruck- und Partialdruckkurven fiir
die drei untersuchten Temperaturen. Die von den Autoren experimentell
erhaltenen Werte sind durch ein beigesetztes E gekennzeichnet. Abb. 4
bringt die Zusammensetzung der Dampfphase in Abhédngigkeit von 3.



H. 6/1964] Zur Ermittlung thermodynamischer Daten 1663

Die Berechnung der Parameter der zweiten Néherung erfolgte mit
Hilfe des ,verketteten Gaufschen Algorithmus“?. Dieser bietet den
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Abb. 3e. 200°.
groflen Vorteil, alle Rechenoperationen und Proben in einer Tabelle
vornehmen zu koénnen. Tab. 2 bringt als Musterbeispiel die Berechnung
fiir den Temperaturwert 200°.
Geht man vom Gleichungssystem

&+ b =0

gy &y + gy G == 04
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aus, so lassen sich die einzelnen Zahlen der zweiten Reduktionsstufe
durch folgende Operationen aus den Koeffizienten der Unbekannten
herleiten

Ca1 == Og;  byy byy = @9y —Cy1 " by

by =@g—0Cy1°by By =8 —Cyly (7)
Ty = (65— Ty b1a) 1 byy
Die Unbekannten errechnen sich schlielich zu
o= ﬁ‘ und &, = — bl‘“'+ o é‘a
622 - bll
Die Verprobung erfolgt durch Einsetzen in die Fehlergleichungen.

(8)

4
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Abb. 4. Konzentration der Dampfphase y des Systems Wasser (1)/Aceton (3) in Abhéngigkeit von
der Konzentration a; des Acetons in der wisserigen Phase. Man beachte die Anniherung an die
Raoultsche Gerade mit zunehmender Temperatur!



H. 6/1964] Zur Ermittlung thermodynamischer Daten 1665

Die mittleren Fehler der Unbekannten errechnen sich nach den
Formeln

s

m:l/mf m-1:m-%

-2’ Von
(9)
1
mig—:?n'*/,:
]/ by
Tabelle 2. Schema des ,verketteten Gaufschen Algorithmus*
fir 200°C -
o w | s s 221,89 236,72 | — 14990 | 443,611
|
Gy G | 0y sy 121 100,89! —6,764* 215,126
Gy, Gy | @y | 8 100,89 135,83 —3,235| 228,485
- |
by bu | b | 4 121 100,89[—~6,764 215,126
ey | by | by | 4 —0,833 | 51,79\‘——2,601 49,19
—7 —T | 0 | 0 1833 —1 | 0 | ©
g —0,01412 —0,05015

Koeffizienten der Gaufischen Fehlergleichungen fur 100 und 150°

@11 L3P 22 2y 2]

100° 2788 530,4 2913 309 35,6
150° 23 17,45 24,46 1,258 0,700

Tabelle 3. Verbesserungen, mittlere Fehler und Parameter der
zweiten Naherung fir 100, 150 und 200°

& b ” me, ", 4 B
100° —0,0386  —0,0210 0,081 0,03 0,03 0,5296  0,8885
150°  — 0,031 +0,0098 0,102 0,014 0,021  0,4495 0,8154
200°  —0,00607 - 0,0216 0,099 0,009 0,037 0,393 0,693

Anmerkung: Samtliche hier erhaltenen Resultate sind auf dekadische
Logarithmen umgerechnet !

Die errechneten Werte sind in der Tab. 3 zusammengestellt. Die
Grofenordnung der Verbesserungen stimmt mit der der mittleren Fehler
itberein, so daBl weitere Ausgleichschritte nicht mehr notwendig sind.
Die Bedeutung des Ansatzes von Musil liegt ja gerade darin, daf} fiir
die meisten Zwecke gentigend genaue Naherungswerte im Bereich von
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z == 0,1 bis etwa 0,9 erhalten werden. In den Bereichen der sehr ver-
diinnten Lésung findet man jedoch mit dem Ansatz nicht das Aus-
langen, so daB in diesen Bereichen die Integration durchgefithrt werden
muf. Sie liefert aber auch dann genaue Werte und Aufschluf iiber die
Verhéltnisse im Bereich hoher Verdiinnung. Die in Tab. 2 angefiihrten
Werte der Konstanten des Ansatzes von van Laar liefern gute Ndherungs-
werte, doch soll hier, da dieser Ansatz gegeniiber dem von Musil keine
Vorteile bietet, nicht ndher darauf eingegangen werden.



